
MSO Query Answering on Trees

Marcin Chrzanowski

December 20, 2022

Question Answering

▶ Fix a function f : S × Q → A
▶ preprocessing: on input S ∈ S output an indexing structure S ′.
▶ answering: on input Q ∈ Q, S ′ outputs f (S, Q).

Question Answering - Time Complexity

▶ Let n = |S|, m = |Q|.
▶ Preprocessing algorithm works in time f (n)
▶ Answering algorithm works in time g(n, m)
▶ Notate the full algorithm’s time complexity as ⟨f (n), g(n, m)⟩.

Example: LCA

Least Common Ancestor problem (LCA)
Given: a tree T .
Questions: for two vertices x and y , what is the lowest (furthest
from the root) vertex that is an ancestor of both x and y?

Classic Harel and Tarjan result: this can be solved in ⟨O(n), O(1)⟩.

MSO Query Answering on Trees

Fixed: an MSO formula φ(X⃗) over trees with k free second-order
variables.

Given: a tree T.

Questions: is W⃗ , a k-tuple of subsets of T ’s vertices, a satisfying
assignment to X⃗? I.e., does T |= φ(W⃗).

Note: first-order variables are supported by restricting input sets to
singletons.

Prior Work

Reduce to Model Checking

▶ Courcelle: MSO model checking over structures of bounded
treewidth is Oφ(n).
▶ MSO query answering in ⟨O(1), Oφ(n)⟩.

▶ Amarilli et al.: Oφ(n) preprocessing, Oφ(log n) relabeling.
▶ MSO query answering in ⟨Oφ(n), Oφ(m log n)⟩.

Kazana

▶ In his PhD thesis, solved MSO query answering (there called
query testing) in ⟨Oφ(n), Oφ(1)⟩.

▶ But limited to formulae whose free variables are all first-order.
▶ Uses Colcombet’s factorization forests.

Our solution

▶ I show an ⟨Oφ(n), Oφ(m log m)⟩ solution to MSO query
answering.

▶ Oφ(1) for first-order free variables, matching Kazana’s result.
▶ Should be understandable by a CS student who has taken

undergraduate algorithmics and automata theory courses.

Reductions

▶ Reduce from MSO to tree automaton (nonelementary wrt to
φ).

▶ Transform to a binary tree.

Relabel Regular Questions on Trees

Fixed: a deterministic bottom-up tree automaton A over Σ.

Given: a tree T labeled with Σ.

Questions: given m relabelings v1 7→ a1, . . . , vm 7→ am, for
vi ∈ V (T) and ai ∈ Σ, what state does A arrive at in the root of T ′,
where T ′ is T with each vi ’s label modified to the corresponding ai?

Answering Questions

Let W be the set of relabeled vertices, m := |W |.

We’ll partition the tree such that:

▶ There will be O(m) rooted parts.
▶ Each element of W will be the root of some part (there may

be other parts not rooted in an element of W).
▶ Working bottom-up, we can compute A’s state in the root of

each part in O(1).

LCA Closure Questions

Given: a tree T.

Questions: given W ⊆ V (T), output the LCA closure of W .

Can be solved in ⟨O(n), O(m log m)⟩ (Section 4.1.2).

LCA Closure Questions

▶ Preprocess for LCA.
▶ Given W , sort it according to in-order numbers.
▶ Add the LCA’s of pairs of subsequent vertices in the sorted list.

Types of Parts

▶ Subtree.
▶ Singleton.
▶ Subtree with a hole.

Types of Parts

Computing Roots of Parts - Subtree

▶ During preprocessing, we precompute A’s run over T .
▶ In a subtree part, only the root was relabeled.
▶ Apply A’s transition function to the precomputed states of the

root’s children and the root’s new label.

Computing Roots of Parts - Singleton

▶ Both of the singleton’s children are roots of parts.
▶ We’re working bottom-up, we’ve already computed the states

in those roots.
▶ Apply A’s transition function to those and the singleton’s new

label.

Computing Roots of Parts - Subtree With a Hole

▶ Nontrivial case.
▶ Idea: can be computed by a DFA walking up from hole to root.
▶ Chapter 3: Branch Infix Regular Questions

▶ Show how to solve this in ⟨OA(n), OA(1)⟩.
▶ Generalization of a known algorithm on words.

Computing Roots of Parts - Subtree With a Hole

Figure 1: Information needed for subtree of v with hole w

Branch Infix Regular Questions

Branch Infix Regular Questions

Fixed: regular language L over alphabet Σ, given by DFA A.

Given: a tree T labeled with Σ.

Questions: given a vertex x and its descendant y , does the word
given by labels on the path from x to y belong to L?

The Word Case

Generalizing to Trees

Jumping Down in a Tree

▶ Need to be able to decide which node to jump down to when
color path breaks.

▶ For each color, mark nodes where the color breaks.
▶ We can compute the highest marked descendant on a path

between two nodes in ⟨O(n), O(1)⟩
▶ Method inspired by RMQ algorithm by Bender and

Farach-Colton.

Highest Marked Descendant on Path

▶ pre: pre-order numbers of T ’s vertices, arranged in post-order.
▶ index[v]: v ’s index in pre.
▶ For x and its descendant y , consider the range

pre[index[y], index[x] - 1]:
▶ All the values correspond to descendants of x .
▶ Values smaller than pre[index[y]] correspond to ancestors of

y .
▶ For unmarked nodes, set their value in pre to ∞.
▶ Now a range minimum query over the above range gives us the

answer.

Highest Marked Descendant on Path

Figure 2: pre for example tree

	Prior Work
	Our solution
	Branch Infix Regular Questions

